Improved Depiction of Pterygopalatine Fossa Anatomy Using Ultrahigh-Resolution Magnetic Resonance Imaging at 7 Tesla

نویسندگان

  • K. P. Q. Oomen
  • F. A. Pameijer
  • J. J. M. Zwanenburg
  • G. J. Hordijk
  • J. A. De Ru
  • R. L. A. W. Bleys
چکیده

PURPOSE To study the anatomy of the pterygopalatine fossa (PPF) using ultrahigh-resolution magnetic resonance imaging. METHODS A human cadaveric tissue block containing the pterygopalatine fossa was examined on a clinical 7-Tesla magnetic resonance imaging system. Subsequently, cryosections of the tissue block were created in a coronal plane. The cryosections were photographed and collected on adhesive tape. The on-tape sections were stained for Mallory-Cason, in order to detail the anatomic structures within the fossa. Magnetic resonance images were compared with surface photos of the tissue block and on-tape sections. RESULTS High-resolution magnetic resonance images demonstrated the common macroscopic structures in the PPF. Smaller structures, best viewed at the level of the operation microscope, which have previously been obscured on magnetic resonance imaging, could be depicted. Some of the orbital pterygopalatine ganglion branches and the pharyngeal nerve were clearly viewed. CONCLUSIONS In our experience with one human cadaver specimen, magnetic resonance imaging at 7 Tesla seems effective in depicting pterygopalatine fossa anatomy and provides previously unseen details through its demonstration of the pharyngeal nerve and the orbital pterygopalatine ganglion branches. The true viability of depicting the pterygopalatine fossa with ultrahigh-resolution MR will depend on confirmation of our results in larger studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M.R.I diagnosis of tumours and tumour-like conditions affecting the pterygopalatine fossa.

OBJECTIVES To create awareness to the radiologist and clinicians for the magnetic resonance imaging (MRI) appearance of Pterygopalatine fossa (PTF) tumours and to evaluate the role of MRI in the diagnostic of PTF lesions. METHODOLOGY Retrospective evaluation of MRI features of 29 patients with pathologically proved pterygopalatine fossa (PTF) lesions was performed. The study included 18 males...

متن کامل

T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm

We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T1-weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours tota...

متن کامل

Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET) Imaging Using GEANT4 Toolkit

Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET). In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEA...

متن کامل

Tilted Microstrip Phased Arrays With Improved Electromagnetic Decoupling for Ultrahigh-Field Magnetic Resonance Imaging

One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate ...

متن کامل

Imaging brain function in humans at 7 Tesla.

This article describes experimental studies performed to demonstrate the feasibility of BOLD fMRI using echo-planar imaging (EPI) at 7 T and to characterize the BOLD response in humans at this ultrahigh magnetic field. Visual stimulation studies were performed in normal subjects using high-resolution multishot EPI sequences. Changes in R(*)(2) arising from visual stimulation were experimentally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012